# Schedule of Accreditation <br> issued by <br> United Kingdom Accreditation Service 

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

10628
Accredited to ISO/IEC 17025:2017

## Procter and Chester (Measurements) Ltd.

Issue No: 007 Issue date: 12 October 2023

| Chester House | Contact: Miles Dadson |
| :--- | :--- |
| Dalehouse Lane Industrial Estate | Tel: $+44(0) 1926864444$ |
| Kenilworth | Fax: $+44(0) 1296864888$ |
| Warwickshire | E-Mail: miles.dadson@pcm-uk.com |
| CV8 2UE | Website: www.pcm-uk.com |
| United Kingdom |  |
| Calibration performed at the above address only |  |

Calibration performed at the above address only

Calibration and Measurement Capability (CMC)

| Measured Quantity Instrument or Gauge | Range | Expanded Measurement Uncertainty ( $k=2$ ) | Remarks |
| :---: | :---: | :---: | :---: |
| FORCE MEASURING DEVICES <br> Calibration of force measuring devices (e.g. strain gauged load cells and load measuring rings) but excluding proving devices, in tension and compression modes <br> Calibration of force measuring devices (e.g. strain gauged load cells and load measuring rings) but excluding proving devices, in compression mode. Increasing forces only | Machine 1 <br> From 2 kN up to 100 kN <br> Machine 2 <br> From 20 kN up to 500 kN <br> Machine 3 <br> From 100 kN up to 5000 kN <br> Machine 4 <br> From 0.05 kN to 1 kN <br> From 0.2 kN to 10 kN <br> Machine 5 <br> From 2 kN up to 100 kN | $0.35 \% F S$ $0.35 \% F S$ $0.41 \% F S$ $0.45 \% F S$ $0.30 \% F S$ $0.35 \% F S$ | Calibration performed to BS 8422:2003 |
| END |  |  |  |


|  | Schedule of Accreditation |
| :---: | :---: |
| issued by |  |

## Appendix - Calibration and Measurement Capabilities

## Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

## Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant nonrepeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of $95 \%$, which usually requires the use of a coverage factor of $k=2$. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

## Expression of CMCs - symbols and units

It should be noted that the percentage symbol (\%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand
Thus, for example, a measurement uncertainty of $1.5 \%$ means $1.5 \times 0.01 \times q$, where $q$ is the quantity value.
The notation $Q[a, b]$ stands for the root-sum-square of the terms between brackets: $Q[a, b]=\left[a^{2}+b^{2}\right]^{1 / 2}$

